Darwin's head-scratcher | WORLD
Logo
Sound journalism, grounded in facts and Biblical truth | Donate

Darwin's head-scratcher

How intelligent design offers the best explanation for the sudden appearance of many animals upon the earth—an event Darwin could not reconcile


HarperOne, an imprint of HarperCollinsPublishers

Darwin's head-scratcher

Stephen Meyer, 54, is director of the Discovery Institute’s Center for Science and Culture. He holds a doctorate from the University of Cambridge, is a former professor at Whitworth College, and was WORLD’s Daniel of the Year for 2009. We selected him for that honor because we admire the guts of those willing to put up with attacks because they believe we have a Creator and are made in His image.

Meyer is the author of Signature in the Cell: DNA and the Evidence for Intelligent Design, and a new book, Darwin’s Doubt: The Explosive Origin of Animal Life and the Case for Intelligent Design, which will be released Tuesday.

Here’s an excerpt from the prologue of Meyer’s new book. —Marvin Olasky

When people today hear the term “information revolution,” they typically think of silicon chips and software code, cellular phones and supercomputers. They rarely think of tiny one-celled organisms or the rise of animal life. But, while writing these words in the summer of 2012, I am sitting at the end of a narrow medieval street in Cambridge, England, where more than half a century ago a far-reaching information revolution began in biology. This revolution was launched by an unlikely but now immortalized pair of scientists, Francis Crick and James Watson. Since my time as a Ph.D. student at Cambridge during the late 1980s, I have been fascinated by the way their discovery transformed our understanding of the nature of life. Indeed, since the 1950s, when Watson and Crick first illuminated the chemical structure and information-bearing properties of DNA, biologists have come to understand that living things, as much as high-tech devices, depend upon digital information—information that, in the case of life, is stored in a four-character chemical code embedded within the twisting figure of a double helix.

Because of the importance of information to living things, it has now become apparent that many distinct “information revolutions” have occurred in the history of life—not revolutions of human discovery or invention, but revolutions involving dramatic increases in the information present within the living world itself. Scientists now know that building a living organism requires information, and building a fundamentally new form of life from a simpler form of life requires an immense amount of new information. Thus, wherever the fossil record testifies to the origin of a completely new form of animal life—a pulse of biological innovation—it also testifies to a significant increase in the information content of the biosphere.

In 2009, I wrote a book called Signature in the Cell about the first “information revolution” in the history of life—the one that occurred with the origin of the first life on earth. My book described how discoveries in molecular biology during the 1950s and 1960s established that DNA contains information in digital form, with its four chemical subunits (called nucleotide bases) functioning like letters in a written language or symbols in a computer code. And molecular biology also revealed that cells employ a complex information-processing system to access and express the information stored in DNA as they use that information to build the proteins and protein machines that they need to stay alive. Scientists attempting to explain the origin of life must explain how both information-rich molecules and the cell’s information-processing system arose.

The type of information present in living cells—that is, “specified” information in which the sequence of characters matters to the function of the sequence as a whole—has generated an acute mystery. No undirected physical or chemical process has demonstrated the capacity to produce specified information starting “from purely physical or chemical” precursors. For this reason, chemical evolutionary theories have failed to solve the mystery of the origin of first life—a claim that few mainstream evolutionary theorists now dispute.

* * *

To those unfamiliar with the particular problems faced by scientists trying to explain the origin of life, it might not seem obvious why invoking natural selection does not help to explain the origin of the first life. After all, if natural selection and random mutations can generate new information in living organisms, why can it also not do so in a prebiotic environment? But the distinction between a biological and prebiotic context was crucially important to my argument. Natural selection assumes the existence of living organisms with a capacity to reproduce. Yet self-replication in all extant cells depends upon information-rich proteins and nucleic acids (DNA and RNA), and the origin of such information-rich molecules is precisely what origin-of-life research needs to explain. That’s why Theodosius Dobzhansky, one of the founders of the modern neo-Darwinian synthesis, can state flatly, “Pre-biological natural selection is a contradiction in terms.” Or, as Nobel Prize–winning molecular biologist and origin-of-life researcher Christian de Duve explains, theories of prebiotic natural selection fail because they “need information which implies they have to presuppose what is to be explained in the first place.” Clearly, it is not sufficient to invoke a process that commences only once life has begun, or once biological information has arisen, to explain the origin of life or the origin of the information necessary to produce it.

All this notwithstanding, I have long been aware of strong reasons for doubting that mutation and selection can add enough new information of the right kind to account for large-scale, or “macroevolutionary,” innovations—the various information revolutions that have occurred after the origin of life. For this reason, I have found it increasingly tedious to have to concede, if only for the sake of argument, the substance of claims I think likely to be false.

And so the repeated prodding of my critics has paid off. Even though I did not write the book or make the argument that many of my critics critiqued in responding to Signature in the Cell, I have decided to write that book. And Darwin’s Doubt is that book.

* * *

This book addresses Darwin’s most significant doubt and what has become of it. It examines an event during a remote period of geological history in which numerous animal forms appear to have arisen suddenly and without evolutionary precursors in the fossil record, a mysterious event commonly referred to as the “Cambrian explosion.” As he acknowledged in the Origin,Darwin viewed this event as a troubling anomaly—one that he hoped future fossil discoveries would eventually eliminate.

The book is divided into three main parts. Part One, “The Mystery of the Missing Fossils,” describes the problem that first generated Darwin’s doubt—the missing ancestors of the Cambrian animals in the earlier Precambrian fossil record—and then tells the story of the successive, but unsuccessful, attempts that biologists and paleontologists have made to resolve that mystery.

Part Two, “How to Build an Animal,” explains why the discovery of the importance of information to living systems has made the mystery of the Cambrian explosion more acute. Biologists now know that the Cambrian explosion not only represents an explosion of new animal form and structure but also an explosion of information—that it was, indeed, one of the most significant “information revolutions” in the history of life. Part Two examines the problem of explaining how the unguided mechanism of natural selection and random mutations could have produced the biological information necessary to build the Cambrian animal forms. This group of chapters explains why so many leading biologists now doubt the creative power of the neo-Darwinian mechanism and it presents four rigorous critiques of the mechanism based on recent biological research.

Part Three, “After Darwin, What?” evaluates more current evolutionary theories to see if any of them explain the origin of form and information more satisfactorily than standard neo-Darwinism does. Part Three also presents and assesses the theory of intelligent design as a possible solution to the Cambrian mystery. A concluding chapter discusses the implications of the debate about design in biology for the larger philosophical questions that animate human existence. As the story of the book unfolds, it will become apparent that a seemingly isolated anomaly that Darwin acknowledged almost in passing has grown to become illustrative of a fundamental problem for all of evolutionary biology: the problem of the origin of biological form and information.

To see where that problem came from and why it has generated a crisis in evolutionary biology, we need to begin at the beginning: with Darwin’s own doubt, with the fossil evidence that elicited it, and with a clash between a pair of celebrated Victorian naturalists—the famed Harvard paleontologist Louis Agassiz and Charles Darwin himself.

Adapted from Darwin’s Doubt: The Explosive Origin of Animal Life and the Case for Intelligent Design by Stephen C. Meyer. Copyright © 2013 by Stephen C. Meyer. Used with permission of HarperOne, an imprint of HarperCollinsPublishers.


Stephen C. Meyer Stephen is director of the Discovery Institute’s Center for Science and Culture. He holds a doctorate from the University of Cambridge, is a former professor at Whitworth College, and was WORLD’s Daniel of the Year for 2009.


An actual newsletter worth subscribing to instead of just a collection of links. —Adam

Sign up to receive The Sift email newsletter each weekday morning for the latest headlines from WORLD’s breaking news team.
COMMENT BELOW

Please wait while we load the latest comments...

Comments